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Abstract

It is well-known that the dominating paradigm of the robustness re-
search is the so-called worst-case model. In contrast to this model, the
main feature of the approach studied in this paper is to provide a proba-
bilistic assessment on the system robustness.

We present here an overview of this research area, usually denoted as
“probabilistic methods for analysis and control of uncertain systems.”

1 Introduction

The modern approach for robustness of control systems is mainly focused on
a deterministic description of the uncertainty. Along this line of research, fun-
damental results have been obtained in the last twenty years, see for instance
[6],[9],[40] and references therein. The main drawback of this approach, however,
lies in the computational complexity limitations arising in a number of problems,
as pointed out in several recent papers on NP-hardness in system and control,
see e.g. [7],[8],[28]. This issue forces the control engineer to introduce simplifica-
tions and overbounding in the description of the uncertainty, in order to obtain
a relaxed problem that is easier to deal with. In this way, one trades tightness in
the problem description with computational efficiency.

The study of probabilistic methods for analysis and design of control systems
has recently received a growing interest in the scientific community. Probabilistic
and randomized techniques provide complementary methodologies for studying
robustness, with a trade-off between computational complexity and tightness of
the solution [13],[15],[31],[41]. The starting point of the randomized approach
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is to introduce a probabilistic description of the unknown-but-bounded uncer-
tainty. Unlike classical worst-case methods, randomized algorithms provide a
probabilistic assessment on the satisfaction of design specifications. Besides their
low complexity, a fundamental advantage of these algorithms resides in the fact
that the obtained robustness margins are larger than the classical ones, if a pre-
specified level of risk is accepted [12]. Probabilistic algorithms can therefore be
used by the control engineer, together with classical robustness methods, in order
to obtain useful additional information on the problem.
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Figure 1: M -∆ configuration.

In this paper, which is a revised and updated version of [38], we present a
review of recent results on the probabilistic approach for robustness analysis and
design of uncertain systems. In Section 2, we introduce definitions and notation.
In Section 3, we derive explicit bounds for the number of samples required to
estimate, within a given level of accuracy and confidence, the probability that a
control system subject to random uncertainty ∆, with given probability density
function (pdf) over a set ∆ρ, attains a specified performance level γ. It can be
easily shown that the number N of randomly generated samples is independent of
the number of blocks (either real, complex or mixed) of the matrix ∆ and the size
of the set ∆ρ. This fact is an immediate consequence of the Law of Large Numbers
and is often used in Monte Carlo simulations, see [22],[36],[37]. Subsequently, in
Section 4, the problem of sample generation is outlined, and algorithms for the
generation of random samples uniformly distributed in various norm-bounded
sets are discussed. In Section 5, we show how probabilistic robust design can be
performed in this framework. In particular, we discuss iterative algorithms for
the design of Linear Quadratic Regulators that guarantee robustness properties
in terms of probability. Conclusions are briefly summarized in Section 6.

2 Preliminaries

In this paper, we use the standard M -∆ configuration adopted in worst-case ro-
bustness methods; see e.g. [40] for a more general discussion on this topic. In
Figure 1, M(s) represents the deterministic part of the system, which consists of
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the nominal plant and controller transfer matrices and weighting functions, while
∆ is used to describe various perturbations affecting the control system. Distur-
bances and errors are denoted by d and e, respectively. The class of allowable
perturbations is defined as

∆
.
= {blockdiag [q1Ir1 , . . . , q`Ir`

, ∆1, . . . , ∆b]}.

The vector q
.
= [q1, q2, . . . , q`]

T ∈ F` takes into account real or complex parametric
uncertainties affecting the plant, while the matrices ∆i ∈ Fni,mi , i = 1, . . . , b
are full block matrices generally introduced to represent high order unmodeled
dynamics. The structured matrix ∆ is restricted within a set ∆ρ described in
terms of norm-bounded balls of radius ρ

∆ρ
.
= {∆ ∈ ∆ : ‖q‖ ≤ ρ, ‖∆i‖ ≤ ρ, i = 1, . . . , b} .

In the standard µ-theory setting [18],[35], the induced `2-norm

‖∆‖2
.
= sup

kxk2=1

‖∆x‖2

is used, even though definitions of µ based on the Frobenius-norm have been also
studied [23]. The choice of the `2-norm is clearly equivalent to take ‖q‖1 and
‖∆i‖2, i = 1, . . . , b. We remark that, depending on the specific problem under at-
tention, different `p norms may be chosen to describe parametric uncertainty. For
example, one can choose `2 and `1 norm balls as bounding sets for the uncertainty
vector q; see e.g. [3].

In the classical problem of robustness analysis of the control system shown
in Figure 1, the goal is to guarantee that a certain performance requirement is
attained for all ∆ ∈ ∆ρ. In general, this requirement can be stated in terms of
the performance function

u
.
= u(∆),

where u(∆) is a Lebesgue measurable function of ∆. Without loss of generality,
in this paper we study a single performance function, but in general the simulta-
neous attainment of several performance requirements may be handled with the
techniques presented here.

A classical example of performance function deals with the H1 norm of a
stable transfer function matrix Tde(M, ∆) between the disturbances d and the
error e. That is, we set

u(∆) = ‖Tde(M, ∆)‖1,

and check, for a given performance level γ, if u(∆) < γ for all ∆ ∈ ∆ρ.
Another example of performance function is related to robust stability of a

continuous time MIMO system. To illustrate, consider a state-space realization
of M , i.e.

M(s) = C(sI − A)¡1B + D,
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with A ∈ Rn,n stable and B, C, D real matrices of suitable dimensions. Then, if
the well-posedness condition on D holds [33], we obtain

{∆ : A + B∆(I −D∆)¡1C stable} = {∆ : det(I −∆M(jω)) 6= 0, ∀ω ∈ R}.
The performance function u(∆) for robust stability of the M -∆ configuration is
therefore given by

u(∆) = max(Re λ1(∆), Re λ2(∆), . . . , Re λn(∆))

where λ1(∆), . . . , λn(∆) are the eigenvalues of the uncertain matrix A D



can be taken as a measure of the system robustness. We observe that in classical
robustness analysis, one of the objectives is to compute the value of γ such that
performance is guaranteed for all ∆ ∈ ∆ρ. This is equivalent to require that the
set ∆good coincides with ∆ρ. On the other hand, in a probabilistic setting, we are
satisfied if these two sets “approximately” coincide and, in particular, the ratio

vol(∆good)

vol(∆ρ)
(1)

is close to one.
Next, we assume that the structured matrix ∆ is a random matrix with asso-

ciated probability density function f∆(∆) and support ∆ρ. Formally, for a given
set S ⊆ ∆ρ, we define

Prob{∆ ∈ S} =

∫

S

f∆(∆)d∆.

The probabilistic robustness of the M -∆ system is therefore stated in terms of
the probability that the system satisfies the desired perfomance. In other words,
if ∆ is a random matrix, we aim to compute the “weighted” volume of the set
∆good with respect to the density function f∆(∆)

Prob{∆ ∈ ∆good} =

∫

∆good

f∆(∆)d∆ = Prob {u(∆) ≤ γ}.

Clearly, if f∆(∆) is the uniform density on ∆ρ, the probability Prob{∆ ∈ ∆good}
coincides with the ratio, defined in (1), of the volumes vol(∆good) and vol(∆ρ).
We remark that the choice of uniform distribution is common in this setting for
its worst-case properties in a certain class of distribution functions [4].

3.1 Performance Verification Problem

We now study the probabilistic version of the performance verification problem.
Given a performance level γ > 0, we aim to estimate the probability of perfor-
mance

pγ
.
= Prob {u(∆) ≤ γ}. (2)

The exact computation of this probability is in general very difficult, and only in
very special cases can be computed in closed form, see e.g. [19]. More generally, pγ

may be estimated by means of a randomized algorithm. To this end, we generate
N independent identically distributed (i.i.d.) samples within ∆ρ

∆1, ∆2, . . . , ∆N ∈ ∆ρ

according to the given density function f∆(∆). Subsequently, we compute

u(∆1), u(∆2), . . . , u(∆N)
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and we construct the indicator function

I(∆i)
.
=

{
1 if u(∆i) ≤ γ;
0 otherwise.

An estimate of pγ is immediately obtained as

p̂N =
1

N

N∑
i=1

I(∆i)

which is equivalent to

p̂N =
Ngood

N

where Ngood is the number of samples such that u(∆i) ≤ γ. The estimate p̂N is
usually referred to as empirical probability.

Clearly, for a finite sample size, it is important to know how many samples are
needed to obtain a reliable estimate p̂N of pγ. This reliability can be measured
in terms of the “closeness” of p̂N to the probability pγ. That is, given ε ∈ (0, 1),
we impose

|pγ − p̂N | = |Prob{u(∆) ≤ γ} − p̂N | ≤ ε.

Since p̂N is estimated via random sampling, we notice that it is a random variable.
Therefore, for given δ ∈ (0, 1), we require

Prob{|pγ − p̂N | ≤ ε} ≥ 1− δ. (3)

The problem is then finding the minimal N such that (3) is satisfied for fixed
accuracy ε ∈ (0, 1) and confidence δ ∈ (0, 1). An immediate solution of this prob-
lem is given by the Bernoulli Law of Large Numbers [5].

Bernoulli Law of Large Numbers
For any ε ∈ (0, 1) and δ ∈ (0, 1), if

N ≥ 1

4ε2δ

then
Prob{|pγ − p̂N | ≤ ε} ≥ 1− δ.

The derivation of this bound is very simple and it is based upon the Chebychev
inequality [29]. We observe that the number of samples computed with the Law
of Large Numbers is independent of the number of blocks of ∆, the size of ∆ρ and
the density function f∆(∆). Unfortunately, the number of samples N may be very
large. For example, if ε = 0.1% and 1− δ = 99.9%, we obtain N = 2.5 · 108. We
remark, however, that the cost associated with the evaluation of u(∆i) for fixed
∆i is polynomial-time in many cases. This is true when dealing, for example, with
the computation of H1 norms or when stability tests are of concern. Therefore,
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on the contrary of the worst-case robustness approach (see the discussion in
Section 1), we conclude that the total cost to perform probabilistic performance
analysis is polynomial-time, provided that polynomial-time algorithms for sample
generation are available. This latter problem is addressed in Section 3.

A bound which improves upon the previous one is the Chernoff Bound [16].

Chernoff Bound
For any ε ∈ (0, 1) and δ ∈ (0, 1), if

N ≥ log 2
δ

2ε2

then
Prob{|pγ − p̂N | ≤ ε} ≥ 1− δ.

We remark that the Chernoff Bound largely improves upon the bound of
Bernoulli. For example, if ε = 0.1% and 1−δ = 99.9%, we compute N = 3.9 ·106.

Finally, we observe that these bounds can be computed a priori and are
explicit. That is, given ε and δ one can find directly the minimum value of N .
On the other hand, when computing the classical lower and upper confidence
intervals, the sample size obtained is not explicit. More precisely, for given δ ∈
(0, 1), the so-called lower and upper confidence intervals pL and pU are such that

Prob{pL ≤ pγ ≤ pU} = 1− δ.

The evaluation of this probability requires the solution with respect to pL and pU

of equations of the type

N∑

k=Ngood

(
N

k

)
pL

k(1− pL)N¡k = δL;

Ngood∑

k=0

(
N

k

)
pU

k(1− pU)N¡k = δU ,

with δL + δU = δ. Clearly, the probabilities pL and pU can be computed only a
posteriori, once the value of Ngood is known. Moreover, since an explicit solution
of the previous equations is not available, standard tables are generally used; see
e.g. [20] and [34].

3.2 Worst-Case Performance Problem

When dealing with the worst-case performance problem, we look for a probabilis-
tic estimate of

umax = max
∆2∆ρ

u(∆).
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Figure 2: Comparison between Chernoff and worst-case bounds

To this end, we adopt again a random sampling scheme, as in the performance
verification problem, generating N i.i.d. samples within ∆ρ. Consequently, we
obtain

ûN
.
= max

i=1,2,...,N
u(∆i).

For this special formulation of the probabilistic robustness problem, a bound on
the sample size N is given in [22] and [37].

Bound for worst-case performance
For any ε ∈ (0, 1) and δ ∈ (0, 1), if

N ≥ log 1
δ

log 1
1¡ε

(4)

then
Prob{Prob{u(∆) > ûN} ≤ ε} ≥ 1− δ. (5)

In [15] the bound (4) is shown to be tight if the distribution function of ∆ is
continuous.

We remark that the worst-case performance problem is a special case of the
general empirical probability estimation discussed in the previous subsection. In
fact, setting γ = ûN in (2) we obtain

pγ = Prob {u(∆) ≤ ûN} = 1− Prob {u(∆) > ûN}
and

p̂N =
Ngood

N
= 1.
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Therefore, equation (3) becomes

Prob{|pγ − p̂N | ≤ ε} = Prob{Prob{u(∆) > ûN} ≤ ε}.
Comparing the bound (4) with the Chernoff bound, it can be immediately verified
that the number of samples required for the worst-case performance problem
is much smaller than that needed for the performance verification problem; see
Figure 2. However, there is no guarantee that ûN is actually close to the maximum
umax. As shown in Figure 3, the bound previously discussed only guarantees that
the set of points greater than the estimated value has a measure smaller than ε
and this is true with a probability at least 1− δ. In turn, this implies that if the
function u(∆) is sufficiently smooth, the estimated and actual maximum may be
close.

In [2] a similar problem, with only one level of probability, instead of the two
probability levels studied in this section, is considered. However, in this case, the
sample size may be an exponential function of the number of uncertainties and
therefore computational complexity becomes a critical issue. Finally, we recall
that many results on sample complexity, based on the introduction of powerful
concepts like VC-dimension (a measure of the problem complexity), may be found
in [39]; see also [24] for some recent results.

4 Sample Generation Problem

As discussed in the previous section, a problem which is critical in the proba-
bilistic setting is the development of efficient algorithms for sample generation in
various sets according to several distributions. The interested reader may refer
to [17] and [27] for a general discussion on the topic of random number gener-
ation. In particular, in [17] several algorithms for univariate sample generation
according to various distributions are shown, while in [27] Monte Carlo and Quasi-
Monte Carlo methods are analyzed in details. However, no specific algorithm for
vector and matrix sample generation within sets of interest in robust control is
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provided in the Monte Carlo literature. We also remark that standard rejection
methods cannot be used for their inefficiency, see details in [13]. In the context of
uncertain control systems described in the M -∆ form, the problem is the sample
generation within ∆ρ according to a given density function f∆.

For real and complex parametric uncertainties q1, q2, . . . , q`, bounded in the
`p norm-ball of radius ρ

BF(ρ)
.
=

{
q ∈ F` : ‖q‖p ≤ ρ

}
, (6)

the sample generation problem has a simple solution. We report here an algo-
rithm, presented in [10], that returns a real random vector q uniformly distributed
in the norm-ball BR(ρ). This algorithm is based on the so-called Generalized
Gamma density Ḡa,c(x), defined as

Ḡa,c(x) =
c

Γ(a)
xca¡1e¡xc

, x ≥ 0,

where a and c are given parameters and Γ(a) is the Gamma function.

Algorithm for uniform sample generation in BR(ρ)

1. Generate ` independent random real scalars ξi distributed according
to Ḡ 1

p
,p(x).

2. Construct the random vector x ∈ R` of components xi = siξi, where si

are independent random signs. The random vector y = x
kxkp

is uniform-

ly distributed on the boundary of BR(ρ).

3. Generate z = w1/`, where w is a random variable uniformly distribu-
ted in [0, 1]. Return q = ρzy.

Figure 4 visualizes the main steps of this algorithm in the simple case of sample
generation of two dimensional real vectors in a circle of radius one (` = 2, p = 2,
ρ = 1). First, we notice that for p = 2 the Generalized Gamma density Ḡ 1

p
,p(x)

is related to the Gaussian density function. The random samples drawn from a
Gaussian distribution (step 1) are radially symmetric with respect to the `2 norm.
Roughly speaking, this means that their level curves are `2-spheres. Secondly,
the samples are normalized obtaining random vectors uniformly distributed on
the boundary of the circle (step 2), and then injected according to the volumetric
factor z (step 3). We remark that in [10] a similar algorithm for complex vectors
uniformly distributed in the norm-ball BC(ρ) is presented. The related concept
of p-normality is discussed in [21] and an algorithm for the sample generation on
the boundary of the `2 norm-ball is given in [26]

The sample generation problem becomes much harder when we are interested
in the uniform generation of real and complex matrix samples ∆ ∈ Fn,m bounded
in the induced `p-norm. In particular, while the cases p = 1 and p = ∞ can be im-
mediately reduced to multiple random vector generation for which the techniques
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Figure 4: Generation of real random vectors uniformly distributed in a circle

described in [11] can be used, the solution for the induced `2-norm ball requires
the development of specific methods. In particular, the algorithms presented in
[13] and [14] are based on the singular value decomposition of the complex (real)
matrix ∆ in the matrix product

∆ = UΣV ⁄

where U and V are unitary (orthogonal) matrices and Σ is a diagonal matrix
containing the singular values of ∆. The main idea is to compute the density
functions of U , Σ and V , respectively, such that the resulting pdf f∆(∆) is uni-
form. This approach is an extension of the methods described in [1] and [25] in
the context of the theory of random matrices for the special case when ∆ is a
real symmetric matrix.

5 Probabilistic Robust LQ Regulators

In this section, we discuss probabilistic robust design of uncertain systems in
the classical setting of Linear Quadratic Regulators. We consider a state space
description of the M -∆ system given in Figure 1, where the structured uncertainty
∆ ∈ ∆ρ enters into the state matrix of the system

ẋ(t) = A(∆)x(t) + Bu(t), (7)
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with initial conditions x(0) = x0.
The performance index is the standard quadratic cost function

J
.
=

∫ 1

0

(xT (t)Sx(t) + uT (t)Ru(t))dt

where S = ST ≥ 0 and R = RT > 0 are given weights. We take a state feedback
law of the form

u(t) = −R¡1BT Q¡1x(t) (8)

with Q = QT > 0. For given γ > 0, it is well-known that the LQR problem can
be reformulated in terms of the Quadratic Matrix Inequality (QMI)

A(∆)Q + QAT (∆)− 2BR¡1BT + γ(QSQ + BR¡1BT ) < 0.

That is, if a solution Q = QT > 0 of this QMI exists for all ∆ ∈ ∆ρ, then the
control law (8) quadratically stabilizes the system (7), and the cost

J ≤ γ¡1xT
0 Q¡1x0

is guaranteed for all ∆ ∈ ∆ρ, see e.g. [30].
The solution given in [32] is based on a sequential algorithm. At each step of

the sequence, the algorithm is based upon two stages

• Generation of a random sample ∆k of the uncertainty ∆ ∈ ∆ρ.

• Subgradient computation for the convex constraint defined by the QMI for
∆k.

The first stage depends on the specific uncertainty structure under attention
and can be performed using the methods described in Section 4. The outcome
of this stage is a random sample ∆k ∈ ∆ρ. The second stage requires finding
an “approximate solution” of a convex constraint defined by the guaranteed cost
problem. This can be immediately performed by subgradient step and projection
on a cone of nonnegative definite matrices. The outcome of this stage is to obtain
Qk.

In [32], under fairly mild assumptions, it is shown that this sequential algo-
rithm provides a controller which guarantees a given cost with probability one
in a finite number of steps. In addition, at a fixed step k, a lower bound of the
probability that a quadratically stabilizing controller is found is also computed.
One of the advantages of this solution is that very general uncertainty structures
can be easily handled. For example, when dealing with quadratic stability of
an uncertain system affected by structured or nonlinear parametric uncertainty,
standard methods based on Linear Matrix Inequalities (LMI) [9] cannot be used
without introducing overbounding. In addition, even if this conservatism is ac-
ceptable, the LMI solution generally requires to simultaneously solve a number of
convex inequalities which is exponential in the number of parameters. Unless the
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problem size is very small, this issue is computationally critical so that finding
a feasible solution with standard interior point methods may be very difficult
or even intractable. On the other hand, the solution discussed here deals with
only one constraint at each step of the sequence and therefore computational
complexity is not an issue.

6 Conclusion

This paper is focused on nonstandard tools for analysis and control of uncertain
systems, with emphasis on the interplay of probability and robustness. The
goal is to combine hard bounds, which are frequently used in classical robust
control, with probabilistic information which is often neglected in this context.
The main advantage is to provide additional insight to the control engineer. This
insight may be very useful in analyzing and designing uncertain control systems.
We believe that future research will be mainly directed towards the syntesis
of probabilistic robust controllers for output feedback and the development of
probabilistic optimization algorithms.
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[39] Vidyasagar M. (1997) A Theory of Learning and Generalization. Springer-
Verlag, London

[40] Zhou K., Doyle J.C. and Glover K. (1996) Robust and Optimal Control.
Prentice-Hall, Upper Saddle River

[41] Zhu X., Huang Y. and Doyle J. (1996) Soft vs. Hard Bounds in Probabilistic
Robustness Analysis. Proceedings of the Conference on Decision and Control,
Kobe, Japan

An Overview on Randomized 
Algorithms for Analysis and Control of Uncertain Systems  

3 - 16 RTO-EN-SCI-142 


	An Overview on Randomized Algorithms for Analysis and Control of Uncertain Systems
	Abstract
	1  Introduction
	2  Preliminaries
	3  Probabilistic Robustness Analysis
	3.1  Performance Verification Problem
	3.2  Worst-Case Performance Problem

	4  Sample Generation Problem
	5  Probabilistic Robust LQ Regulators
	6  Conclusion
	References




